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Abstract. The magnetically tunableenergy spectrumand the charge density distri- 
butions of electrons in GaAs-AlGaAs quantum wells with magnetic fields parallel to 
the interfaces me calculated both analytically and numericdly. For states below the 
barrier edge and magnetic fields up to 15-20 T both methods yield nearly identical 
results. There are two types of localized states above the barrier. They originate 
&om shallow depressions of the effective potential and from interferences. 

1. In t roduct ion  

Recently, a new, graph-supported analytical method (arrow train method) has been 
developed in order to calculate the energy eigenvalues and wavefunctions of electrons 
in an infinitely deep quantum well (QW) with a magnetic field oriented parallel to the 
potential walls [l]. Subsequently, the method has been generalized for the treatment 
of Q w s  of finite depth in parallel fields, and the resulting energy spectrum was used 
in the computation of the magnetization which oscillates as a function of the chemical 
poteiitial [2]. The purpose of the present paper is twofold: first we present the analyt- 
ical calculation of this spectrum which neglects the magnetic field in the harrier and 
is thus strictly valid only for the low lying energy states. Second by numerically inte- 
grating the Schrodinger equation we obtain the full energy spectrum and the charge 
density distribution of the individual eigenstates. Thus, the deviations of the results 
of the analytical approximation from the ones of the exact numerical computations 
can he determined. Furthermore, we look for and find localized barrier states which 
are to he expected for appropriate 'centre of orbit' coordinates [3, 41. 

2. Approximate  analytical energy spec t rum and wavefunctions 

In this section we extend the arrow train method to isolated rectangular QWs with 
barriers of finite height V. We will first describe the mathematical method employed 
in [l] in solving the eigenvalue problem and later we will indicate the modifications to 
those equations in [l] which are affected by the finite barrier height. 

To solve the eigenvalue problem the wavefunction in the Schrodinger equation is 
first expanded in a power series. Since the Hamiltonian is that of a harmonic oscillator 
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in a box it contains ody  second-order derivatives and a second-order polynomial. 
Thus the Schrijdinger equation in matrix notation contains non-zero elements only on 
a few diagonals near the main diagonal. Together with the equations arising from 
the boundary conditions we get an infinite set of linear equations for the expansion 
coefficients of the wavefunction. The eigenvalues are given by the condition that its 
determinant must vanish. 

For this determinant a power series representation can he derived as a function 
of the parameters appearing in the Schrijdinger equation, i.e. energy, magnetic field 
strength and wavevector. This representation can then be inverted to get the energy 
as a power series of magnetic field strength and wavevector. The coefficients of this 
power series expansion are given analytically. In order to derive the power series 
representation of the determinant it is expanded with respect to the rows arising from 
the boundary conditions. This gives an infinite s u m  over infinite minors. Due to 
the nature of the Hamiltonian and the power series expansion of the wavefunction 
these infinite minors can he factorized into a finite part and an infinite minor of value 
unity. The remaining minors of finite order are almost triangular. A recursion relation 
can be established that allows the minors to he brought to a fully triangular shape 
and, hence, allow the calculation of the minors. With a graph-supported arrow train 
method this recursion relation can be solved for an arbitrary order of the minors. 
This yields a power series representation of the determinant as a function of energy, 
magnetic field and wavevector with coefficients given by analytical expressions. Setting 
the determinant equal to zero and solving for the energy results in a power series in 
magnetic field and wavevector, again with coefficients given by analytical expressions. 
Once these coefficients have been calculated one can compute exactly the spectrum of 
any QW with infinite barrier potential at any magnetic field. 

The extension of the method to QWs with finite barrier height is briefly sketched 
in the following. The QW extends in the z-direction from -4 to 4 in coordinates 
normalized to the well width a. The magnetic field is e,BII, ,and the corresponding 
vector potential is chosen to be A = -e,zaBII. (The orientation of the parallel field 
is different from the one in [l] in order to have Maan's gauge [5] in the general case 
of a tilted field, to be discussed in a later paper.) The SebrGdinger equation for the 
motion in the z-direction is 

- dz'(z) + [c - bz(z - z,,)' - uO([rl - +)]$(z) = 0. 
dz2 

The dimensionless variables in equation (1) are 

E = 2m*a2[E- hzk2/2m*]/h2 

v = V2m'a2/h2 

b = a2eBll/h = a2/R2 

to = lik,/eBlla 

where E is the energy eigenvalue, k,, k, are the wavenumbers of electron propagation 
parallel to the potential walls, and m* is the effective mass (which is different within 
the QW and in the barriers). An approximatesolution of equation (1) can be obtained 
for comparatively low magnetic fields and strong barrier potentials. Then the effect 
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of the magnetic field on the electrons in the barrier is small compared to that of the 
barrier potential, and in the range IzI > $ equation (1) can be approximated by 

This equation has the solution 

$(z )  = Ale7" + Aze-7z y = 6. ( 4 )  

Normalization requires that A, = 0 in the left barrier, A, = 0 in the right barrier. 
Within the QW, for JzJ < $, the solutions of equation (1) are expanded in a power 
series [l]: 

m 

= 'pnzn. 
n=O 

(5) 

The boundary conditions for the solution of equation (1) are given by the continuity of 
the probability current density through the interfaces. They are satisfied if the total 
wavefunction and its first derivative are continuous. In the effective mass approxima, 
tion the Bloch part of the wavefunction is taken into account in the effective mass and 
$(z)  represents the envelope function only. Bastard [6] argues that in this case the 
envelope function and its first derivative divided by the effective mass have to be con- 
tinuous. In this paper we do not take into account the difference in the effective masses. 
(Johnson and MacKinnon [4] have shown how to handle effectivemassdifferences via 
energy and effective mass-dependent barrier potentials.) The boundary conditions are 
thus the usual ones of matching the wavefunctions and their derivatives in z = 5;.  
With the wavefunctions ( 4 )  and (5) the matching conditions result in the following 
set of equations for the expansion coefficients pn: 

2 (;y" (1 + $) P2" = 0 
n=O 

n=O 

These equations have the same structure as the corresponding equations (2.76) and 
( 2 . 7 ~ )  of 111. The effect of the finite barrier height can thus be incorporated into the 

to 
treatment of [l] by changing the coefficients A-2,2r = (i)" and A-l,21+l = (F) 1 21t1 

41 + 2 21+1 

A - l , z l t l  = (@ (1 + ,> ' 
We insert these coefficients into equation (2.9) of [l] for the determinant and expand 
the additional factors of I/y and I/y2 into an infinite power series of E .  The deter- 
minant of the coefficients is expanded as in [l]. Since the only difference is in the 
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boundary conditions the calculation of the minors is the same as for the infinite bar- 
rier potential. The resulting energy eigenvalue equation then has the same form as in 
the case of the infinite barrier height: 

m m G I 2  

(8) 2 2 1  ZL 2 9 -  
D = cc D l , , , k ( 4 ( +  -t b zo) b zo - 0. 

J=O t=O g=O 

The only difference from equations (2.8) and (2 .15~)  of [ l ]  is that the coefficients 
DI,g , t (~ )  are now functions of the barrier height U: 

DI,g,k(u) = DZg,k(l + 2 ( 2 f +  4k - 2g + + 4D~,g ,ku- '  

DTg 
of fl) and DY,gtb is 

is the expansion coefficient for infinite barrier height given by equation (2 .15b)  

X -2VW(f',g', h')[2(f - f') + 3(2g - 9') + 4(k - 29 - h') + 11 
x - 1 V , ( f - f ' , 2 g - g ' , k - 2 g - h ' ) .  (10) 

The coefficient .V, is defined by equation (2.13) of [l]. The energy spectrum 

(11) 
ti2 h2 

U k , ,  "1 = S E " ( V ' b ,  k,a) + -4 2m* 

results from the power series representation of E :  

The Gh., 
typographical errors in equations (2.17) of [I]) 

are determined via the recurrence relations (equations (13) correct some 
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The initial value 1 2 k ; ~ , ~ ( w )  is the energy in the absence of a magnetic field and 
results from the ‘particle-in-a-box’ eigenvalue equation 

The energy spectta obtained from solving equations (11)-(14), e.g. on a PCj are dis- 
cussed later in conjunction with the spectra obtained by exact numerical integration 
ofequation (1). 

The eigenfunctions of the QW states are obtained by inserting the energy eigen- 
values into the parabolic cylinder functions which solve the Schrodinger equation (I). 
With the conduent hypergeometric functions M ( a ,  &-y) and the definitions 

c := ( - E +  b a 4 ) / 2 b  x := &(z - z ~ )  y := 63, ( 1 5 )  

the parabolic cylinder functions are 

The coefficients of the appropriale linear cambiaation of thee functions and the coef- 
ficients A, and A, of the wavefunction in the barrier are determined by the boundary 
conditions and the normalization condition. These eigenfunctions are valid for 6 c B. 

Their graphical representations agree very well with the wavefunctions obtained by 
exact numerical integration in section 3, cf, e.g., the lowest two and four density 
distributions in figures 3 ( a )  and 3 ( b ) ,  respectively. 
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3. Numerical computation of the energy eigenvalues and eigenfunctions 

In order to calculate the full energy spectrum without the restrictions and approxima- 
tions necessary for the analytical calculations of section 2 we choose an appropriate 
matrix representation of the (dimensionless) Hamiltonian of the Schr6dinger equac 
tion (1) 

(17) 
d2 
dr2 

h = -- + bZ(z - z,)’+ v Q ( ~ z ~  - $). 

A convenient set of basis functions is given by the (sine and cosine) eigenfunctions 
of a box with infinite potential walls in za = &Lz where L, > a/2. For sufficiently 
large L, the eigenfunctions of equation (1) which decrease exponentially for 1.~1 -+ CO 
can be built up from this basis. With this basis the matrix representation of the 
Hamiltonian (17) contains the Fourier transforms of the harmonic oscillator and QW 
potentials. The Hamiltonian is diagonalized with the help of the Lanczos method [7]. 
The resulting energy eigenvalues and spectra are plotted in figures 1 and 2. 
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Figure 1. Thelovest thresenergylevels,c = E2m*01//h, of threeQWS withdifferrot 
(normalized) barrier heights v = V2m*a2/h* aa functions of lhe (dimensionless) 
magnetic field b = B p Z / b .  m* = 0.0665mo is the effective m w  of GaAs. 

Figure 1 shows that in shallow QWS the increase in energy with increasing E field 
is stronger than in deep QWs. This is due to the fact that the tightening of the 
harmonic oscillator potential with increasing field reduces the spatial extension of the 
wavefunctions more in shallow than in deep QWs. (Note that E ,  U and b scale with 
a*, so that for a given a a smaller U means a shallower QW. U = 159 and v = 57 
correspond to 20 nm and 12 nm wide Q W s  formed by GaAs between AI,,,Ga,,,As at  
a conduction band offset of 60%, i.e. V = 227 meV.) 

The energies calculated analytically from equations (11)-(14) of section 2 result in 
a plot very similar to that in figure 1. Quantitative agreement between the analytical 
and numerical results is excellent in the low field range. Deviations are largest for 
large b values, where the error of neglecting the magnetic field in the barriers is most 
severe. However, even then the deviations are somewhat small for all  states within 
the QW,  for which the analytical method has been developed: At b = 20 they are 
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Figure 5.  Spatial dependence of the effective potential v.11 (broken m v e )  and the 
electron dwi ty  distribution plotted at the mmspondiog energy levels with 
zo = 1 for (a) v = 57, b = 5 and ( 6 )  v = 159,b = 2. 

undetectable for the ground state energies, in the second subband the error is 1.2% 
for v = 159 and 7.7% for U = 57, and in the third subband for the QW with v = 159 
the deviation is 5.6%. (Note that U = 57 and b = 20 corresponds to a magnetic field 
of 91 T.) For states outside the QW like the one of the uppermost chain line in figure 1 
the analytical method breaks down and one has to rely on the numerical solutions 
alone. 

For the bound states E < U the analytically calculated energy spectra agree with 
the numerical results shown in figure 2 within the drawing accuracy. As is to be 
expected from the spatial extent of the wavefunctions, the energies of shallow QWS are 
below the ones of deep QWs. For v = 57 the third and higher chain curves represent 
energies above U which no longer increase monotonically with zo (as do the ones 
below v). This is due to the fact that the width of the effective potential veR formed 
by the superposition of the square well and the harmonic oscillator potential with the 
minimum in z, may also increase with z,, in this energy range. The flattening out of the 
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third subband for U = 57 indicates a localized barrier state [3] as can be seen explicitly 
in the charge density distribution of figure 3(4). A corresponding state appears in the 
fifth level of figure 3(b ) .  These states are bound in the shallow depressions of weS. 
There is also a second type of barrier localization brought about by interferences; this 
is shown, e.g., in figure 3(b) by the density distribution of the ninth level for I < 0. 

4. Conclusions 

Cpfs in parallel magnetic fields represent systems whose energy spectra, well estab- 
lished by analytical and numerical calculations, can be tuned magnetically. This may 
make them useful magnet-optical devices. Experimental detection of the localized 
barrier states may be possible by resonant Raman scattering: Electrons pumped op- 
tically into the subband system recombine with the boles in the valence band via the 
emission of a phonon and a photon. The resulting fiequency shift in photolumines- 
cence depends upon the phonon energy which is different in GaAs and AI,Ga,-,As, 
and the intensities of the two different Stokes peaks indicate the probability density 
distributions between the well and barrier of the involved electrons [8]. 
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